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Introduction

The SDRG method, first introduced by Dasgupta, Ma and Hu, and later greatly expanded
by Fisher, yields asymptotically exact results in distributions where the disorder grows with-
out limit in large scales, whilst Fisher also calculated limit values as well as scaling factors for
random spin chains.

These results where the first of many, yielded through the intense research that followed
afterwards, firstly in random quantum systems, and later expanded in classically disordered
systems as well. The previous Real Space RG methods that were used treated the whole space
as homogenous, allowing the grouping of spins into super-spins, and although in systems ab-
sent of randomness this homogenity is physically verifiable, it comes into question in the pres-
ence of disordered systems. The SDRG method has the property of renormalising space in a
non-homogenous way so it can better handle local disorders.

More specifically, the XX chain, presented by Fisher, can be used to obtain exact results for
the behaviour of phases dominated by randomness, as well as the critical behaviour near the
various zero temperature phase transitions that occur. Studying the properties of antiferromag-
netic Heisenberg spin-1/2 chains with random bonds, we analyse the low-energy behaviour,
by decimating the strongest bond, replacing it with a new effective bond between the nearest
neighbours. Repeating the procedure, the distribution becomes extremely broad improving the
accuracy of the approximation.

The structure of the thesis is this. First we introduce the Heisenberg model, it’s relation
to the Ising and Free Fermion models, solve it exactly for the ferromagnetic case using the
Bethe Ansatz and introduce the Block RG method for the antiferromagnetic case. Afterwards
we present the Strong Disorder RG method, using a modernised version of Fisher’s process to
solve the random AF XX chain. Finally, we present the methods we created to simulate the
process.
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1 | Introduction to the Heisenberg Model

A quantum spin chain consists of a one-dimensional lattice with 𝑁 sites, where on each
site we consider a spin particle, in the case of a S-1⁄2 particle an electron. This electron can either
have spin up (denoted by |↑⟩) or down (denoted by |↓⟩) and, therefore, any electron exists in
a linear state 𝑎 |↑⟩ + 𝑏 |↓⟩, which generates a local two-dimensional Hilbert space. Since the
lattice is of size 𝑁 , we also have 𝑁 electrons, so the total Hilbert space in which the states live
is

𝐻 = ⨂
𝑁

ℂ2 (1.1)

The spin operators 𝑆𝑥,𝑦,𝑧
𝑖 act on each site 𝑖 and satisfy the local commutation relations

[𝑆𝑎
𝑖 , 𝑆𝑏

𝑗 ] = 𝛿𝑖𝑗𝜖𝑎𝑏𝑐𝑆𝑐
𝑖 , 𝑖 ≠ 𝑗 (1.2)

The Hamiltonian describes a nearest neighbour interaction between the spins,

𝐻 = −𝐽
𝑁

∑
𝑖

⃗𝑆𝑖 ⃗𝑆𝑖+1 (1.3)

and we also demand that ⃗𝑆𝑁+1 = ⃗𝑆1.

If we expand the Hamiltonian writing the vector components, it is a special case of a more
general Hamiltonian, with the form

𝐻 = −
𝐿

∑
𝑖=1

(𝐽𝑥𝑆𝑥
𝑖 𝑆𝑥

𝑖+1 + 𝐽𝑦𝑆𝑦
𝑖 𝑆𝑦

𝑖+1 + 𝐽𝑧𝑆𝑧
𝑖 𝑆𝑧

𝑖+1) (1.4)

Depending on the nature of 𝐽𝑥, 𝐽𝑦, 𝐽𝑧, one can find five different models, called

• The 𝑋𝑌 𝑍 − 𝑚𝑜𝑑𝑒𝑙, where 𝐽𝑥 ≠ 𝐽𝑦 ≠ 𝐽𝑧

• The 𝑋𝑋𝑍 − 𝑚𝑜𝑑𝑒𝑙, where 𝐽𝑥 = 𝐽𝑦 ≠ 𝐽𝑧

• The 𝑋𝑋𝑋 − 𝑚𝑜𝑑𝑒𝑙, where 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧

• The 𝑋𝑌 − 𝑚𝑜𝑑𝑒𝑙, where 𝐽𝑥 ≠ 𝐽𝑦, and 𝐽𝑧 = 0

• The 𝑋𝑋 − 𝑚𝑜𝑑𝑒𝑙, where 𝐽𝑥 = 𝐽𝑦, and 𝐽𝑧 = 0

Without loss of generality, we can assume that the signs of the 𝐽𝑥 are the same for the whole
chain, as well as for the 𝑦 and 𝑧 components individually. By rotating the spins around the
𝑧-axis, we can always assume that 𝐽𝑥 > 0 and 𝐽𝑦 < 0, so that the ferromagnetical nature
of the model is characterised solely by the 𝐽𝑧. 𝐽𝑧 < 0 means the antiferromagnietic, while
𝐽𝑧 > 0 means the ferromagnetic model.
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CHAPTER 1. 1.1. RELATION TO THE ISING MODEL

Another way to write the Hamiltonian, which will be of use for the later Sections, is via
the spin ladder operators (𝑆± = 𝑆𝑥 ± 𝑖𝑆𝑦), which have the properties that

𝑆+ |↑⟩ = 0, 𝑆+ |↓⟩ = |↑⟩

𝑆− |↑⟩ = |↓⟩ , 𝑆− |↓⟩ = 0
(1.5)

The Hamiltonian then becomes

𝐻 = 𝐽
𝑁

∑
𝑖

[1
2(𝑆+

𝑖 𝑆−
𝑖+1 + 𝑆−

𝑖 𝑆+
𝑖+1)] + 𝐽𝑧

𝑁
∑

𝑖
(𝑆𝑧

𝑖 𝑆𝑧
𝑖+1) (1.6)

We will use this form implicitly while dealing with the Bethe Ansatz and explicitly when
we deal with the Jordan-Wigner transformation.

By looking at the symmetries of the system we can reduce the effective size of the Hamil-
tonian. Consider the operator

𝑆𝑧 =
𝑁

∑
𝑖

𝑆𝑧
𝑖 (1.7)

which measures the total number or up or down spins. Since it commutes with the Hamilto-
nian, we can restrict the subsets of a fixed number of spins up or down. As we extend this to
all spin operators and define

⃗𝑆 =
𝑁

∑
𝑖

⃗𝑆𝑖 (1.8)

we see that this also commutes with the Hamiltonian. Since the spin operators form an SU(2)
algebra, the spin chain also has SU(2) as a symmetry algebra, meaning that it is symmetric
under global rotations of the unit sphere in which the spins exist. This also implies that the
eigenstates of the Hamiltonianwill arrange themselves inmultiplets with respect to the algebra
of SU(2).

1.1 || Relation to the Ising Model
Both the Heisenberg and Ising models constitute simplified models of magnetism in mate-

rials and magnetic phase transitions. Nevertheless, the models differ in their symmetric prop-
erties, which are crucial for determining certain universal1 characteristics of phase transitions.

In the Ising model, we have spins 𝑆𝑖 that can either take the value −1 or + 1 with each
spin living on each site of an arbitrary N-lattice. Typically, the interaction of spins is between
nearest neighbors, with the Hamiltonian being

𝐻𝐼𝑠𝑖𝑛𝑔 = −𝐽
𝑁

∑
𝑖=1

𝑆𝑖𝑆𝑖+1 (1.9)

1We will briefly touch on the subject of universality classes later in this section.
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CHAPTER 1. 1.1. RELATION TO THE ISING MODEL

where we have specifically assumed a 1d model for simplicity.2 If 𝐽 < 0, it’s energetically
preferable for neighboring spins to point in the same direction, macroscopically meaning a
ferromagnet, while if 𝐽 > 0 the preference is to point to opposite directions, meaning an an-
tiferromagnet.

The Heisenberg model looks extremely similar, except for the fact that spin now represents
a three-dimensional unit vector ( ⃗𝑆𝑖) pointing anywhere on the unit sphere. The Hamiltonian
is therefore

𝐻𝐻𝑒𝑖𝑠𝑒𝑛𝑏𝑒𝑟𝑔 = −𝐽
𝑁

∑
𝑖=1

⃗𝑆𝑖 ⃗𝑆𝑖+1 (1.10)

A Brief Discussion on Universality Classes
Although universality classes in general fall outside of the scope of this thesis, it is useful

to know why symmetry properties are important.

As we approach the critical point of a continuous phase transition, the correlation length
typically diverges. The longer and longer lenght scales then become relevant to understand
the underlying physics of the system. If we imagine coarse graining the original spin system
iteratively, the remaining spins represent the average behaviour of larger and larger patches
of bare spins. If we repeat this process up to correlation length, we have generated a series of
energy functions in terms of the spins, where each member of the series is related to a different
lenght scale.

Even though the interactions between the average spins most probably includes different
forms than those between the original spins, they are nevertheless constrained to the forms al-
lowed by the symmetries of the original system. Thus, systemswith same symmetry properties,
follow a similar pattern during this so called coarse graining proccess.3 They will, therefore,
share some universal features, with a specific example being that of the critical exponents, that
describe how properties diverge (or go to zero) near the phase transition points. For a more
detailed analysis of a critical exponent, that of the vanishing of magnetization approaching the
critical temperature from the ordered phase, see Appendix B
Ising and Heisenberg Universality Classes

Focusing on particular dimensionality and lattice structures, in the Ising model the Hamil-
tonian of a specific configuration of spins is invariant under flipping every spin of the system
(+1 → −1 and vice versa). In the Heisenberg model, the Hamiltonian is invariant to applying
the same rotation around the unit sphere to every spin in the system. Therefore the Ising model
is symmetrical under global reflections of the spins, which is a discrete symmetry, whilst the
Heisenberg model is symmetrical under rotations, which is a continuous symmetry.

2Also for consistency of notation with the rest of the thesis.
3Another way to phrase this is they they will ”flow” into the same space of energy functions.
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CHAPTER 1. 1.2. RELATION TO THE FREE FERMION MODEL

The Ising model is therefore useful for studying magnetic phase transitions in systems that
exhibit it’s kind of symmetry, and if we’re working in 𝑛 spacial dimensions, the phase tran-
sitions in these systems belong to the 𝑛-dimensional Ising universality class. Systems with
the symmetries of the Heisenberg model respectively belong to the 𝑛-dimensional Heisenberg
universality class.

Also worth mentioning is the fact that if the third coordinate of the unit vectors of spins
in the Heisenberg model is zero ( ⃗𝑆𝑖 = [𝑆𝑥

𝑖 , 𝑆𝑦
𝑖 , 𝑆𝑧

𝑖 = 0], ∀𝑖 ≤ 𝑁 ), the so called 𝑋𝑌 model,
the spin becomes a unit vector that can point anywhere on the unit circle and the system lies
somewhere in between the Ising and Heisenberg models. It contains a continuous symmetry
under global rotations along the unit circle and phase transitions of systems with this kind of
symmetry belong to the 𝑛-dimensional 𝑋𝑌 universality class.

1.2 || Relation to the Free Fermion Model
Jordan and Wigner[1] observed, in 1928, that the up and down states of a single spin can

be seen as an occupied or empty fermion state, enabling them to make the mapping

|↑⟩ = 𝑓† |0⟩ , |↓⟩ = |0⟩ (1.11)

allowing an explicit representation of the spin ladder operators

𝑆+ = 𝑓† = [ 0 1
0 0 ]

𝑆− = 𝑓 = [ 0 0
1 0 ]

(1.12)

while the 𝑧 component of the spin operator is written as

𝑆𝑧 = 1
2[ |↑⟩⟨↑| − |↓⟩⟨↓| ] = 𝑓†𝑓 − 1

2 (1.13)

The 𝑥 and 𝑦 components are given by

𝑆𝑥 = 1
2(𝑓† + 𝑓)

𝑆𝑦 = 1
2𝑖(𝑓† − 𝑓)

(1.14)

If there are more than one spin particles, the representation needs to be modified, due to
the fact that while independent spin operators commute, independent fermions anticommute.
We can overcome this difficulty by attaching a phase factor, called a string, to the fermions, so
that in the Jordan-Wigner representation, the spin operator at site 𝑗 is

𝑆+
𝑗 = 𝑓†

𝑗 𝑒𝑖𝜙𝑗 (1.15)

4



CHAPTER 1. 1.2. RELATION TO THE FREE FERMION MODEL

where the phase operator 𝜙𝑗 contains the sum of all fermion occupancies at sites left of 𝑗

𝜙𝑗 = 𝜋 ∑
𝑙<𝑗

𝑛𝑙 (1.16)

The operator 𝑒𝑖𝜙𝑗 is thus known as a string operator.

Therefore, the complete transformation is

𝑆+
𝑗 = 𝑓†

𝑗 𝑒𝑖𝜋 ∑𝑙<𝑗 𝑛𝑙

𝑆−
𝑗 = 𝑓𝑗𝑒−𝑖𝜋 ∑𝑙<𝑗 𝑛𝑙

𝑆𝑧
𝑗 = 𝑓†

𝑗 𝑓𝑗 − 1
2

(1.17)

In layman’s terms we took a spin and transformed it into a fermion interacting with a string

spin ↔ fermion × string

If we now look at the Heisenberg Hamiltonian in the spin ladder operators form

𝐻 = 𝐽
𝑁

∑
𝑖

[1
2(𝑆+

𝑖 𝑆−
𝑖+1 + 𝑆−

𝑖 𝑆+
𝑖+1)] + 𝐽𝑧

𝑁
∑

𝑖
(𝑆𝑧

𝑖 𝑆𝑧
𝑖+1) (1.18)

the way to produce the fermionic form is to notice that, in the first term, all terms in the
string operators cancel except for 𝑒𝑖𝜋𝑛𝑗 , which doesn’t effect the Hamiltonian and is therefore
ignored. The first part of the first term becomes

𝐽
2

𝑁
∑

𝑖
𝑆+

𝑖 𝑆−
𝑖+1 = 𝐽

2 ∑
𝑗

𝑓†
𝑗 𝑓𝑗+1 (1.19)

and the second, being the Hermitian conjugate of the first, becomes

𝐽
2

𝑁
∑

𝑖
𝑆−

𝑖 𝑆+
𝑖+1 = 𝐽

2 ∑
𝑗

𝑓𝑗𝑓†
𝑗+1 (1.20)

We see that this term, being the transverse component of the interaction, includes a hop-
ping term in the fermionized Hamiltonian. Of note is the fact that should the spin interaction
include next-nearest neighbours, the string terms would make a comeback.

The 𝑧 component of the Hamiltonian becomes

𝐽𝑧
𝑁

∑
𝑖

(𝑆𝑧
𝑖 𝑆𝑧

𝑖+1) = 𝐽𝑧 ∑
𝑗

(𝑛𝑗+1 − 1
2) (𝑛𝑗 − 1

2) (1.21)
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CHAPTER 1. 1.2. RELATION TO THE FREE FERMION MODEL

So that the complete transformed Hamiltonian is

𝐻 = −𝐽
2 ∑

𝑗
(𝑓†

𝑗 𝑓𝑗+1 + 𝑓𝑗𝑓†
𝑗+1) + 𝐽𝑧 ∑

𝑗
𝑛𝑗 − 𝐽𝑧 ∑

𝑗
𝑛𝑗𝑛𝑗+1 (1.22)

There are two important things to note. The first one is that the ferromagnetic interactions
mean that the spin fermions are actually attracted to one another. The second one is that the
𝑋𝑌 model (𝐽𝑧 = 0) has no interaction term, so this can be mapped to a free fermion model.
The latter was first shown by Lieb et al[2] who used this equivalence to study the physical
properties of the 𝑋𝑌 model.
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2 | Ferromagnetic Ground and Excited States

Let us consider the ferromagnetic Heisenberg Hamiltonian with nearest–neighbour inter-
action

𝐻 = 𝐽
𝑁

∑
𝑖

⃗𝑆𝑖 ⃗𝑆𝑖+1, where 𝐽 < 0 (2.1)

The total energy of the system is given by the sum of the bond energies 𝐸𝑖

𝐸𝑖 = 𝐽 ⃗𝑆𝑖 ⃗𝑆𝑖+1 = 𝐽
2 [( ⃗𝑆𝑖 + ⃗𝑆𝑖+1)2 − ⃗𝑆2

𝑖 − ⃗𝑆2
𝑖+1]

= |𝐽|𝑆(𝑆 + 1) − |𝐽|
2 ( ⃗𝑆𝑖 + ⃗𝑆𝑗)2

(2.2)

which is minimised by taking the two spins parallel ∣ ⃗𝑆𝑖 + ⃗𝑆𝑖+1∣ = 2𝑆 which gives us

(𝐸𝑖)𝑚𝑖𝑛 = |𝐽|[𝑆(𝑆 + 1) − 𝑆(2𝑆 + 1)] = −|𝐽|𝑆2 (2.3)

therefore the ground energy of the whole system is

𝐸𝑡𝑜𝑡 =
𝑁

∑
𝑖

(𝐸𝑖)𝑚𝑖𝑛 = −1
2𝑁|𝐽|𝑆2 (2.4)

The thing to note is that the ground state is not unique. This is because to get the ground
state we took all the spins parallel to minimise the bond energy 𝑆𝑡𝑜𝑡 = 𝑁𝑆. However, since
the Hamiltonian is rotationally invariant, turning the total spin into another direction does not
change the energy and therefore the ground state must be (2𝑁𝑆 + 1)-fold degenerate.

This creates an issue. The partition function is defined as

𝒵 = ∑
𝑗

𝑒−𝛽𝐸𝑗 (2.5)

If we try to include all of the ground states in the partition function, statistical averaging
would give zero expectation value for the total magnetization of a ferromagnet, since we would
average over all possible orientations of the total spin. For a macroscopically large system, we
can restrict the Hilbert space by choosing only one ground state and then consider the finite
excitations above that ground state.

Let us consider two states |𝜓1⟩ , |𝜓2⟩. Let |𝜓1⟩ be polarised in the z-direction and |𝜓2⟩
polarised in an angle 𝜗 with the z-axis. If we assume that a finite excitation above |𝜓1⟩ is
𝑛 << 𝑁 spins flipped over while 𝑁 − 𝑛 spins remain polarised in the z-direction, then the
product of this state with |𝜓2⟩ approaches 0 as 𝑁 → ∞. In the same vein, as 𝑁 → ∞, every
excitation above |𝜓1⟩ is orthogonal to every excitation above |𝜓2⟩, meaning that not only are
ground states orthogonal in the thermodynamic limit, but the Hilbert spaces that we build
from them as well. All states built from |𝜓1⟩ have spin density ⟨𝑆𝑧⟩1 = 𝑆, whilst those of
|𝜓2⟩ have ⟨𝑆𝑧⟩2 = 𝑆 cos(𝜗). This implies that the excitations above one of those states is
distinguishable from the other. It is therefore possible to properly define the partition function
so that it includes only the states built from one of the ground states.

7



CHAPTER 2. 2.1. EXCITED STATES VIA THE BETHE ANSATZ

2.1 || Excited States via the Bethe Ansatz
TheBethe ansatz is an exactmethod for the calculations of the eigenvalues and eigenvectors

of a select class of quantum many-body systems. It was presented in 1931 by Hans Bethe[3]
to obtain the exact eigenvalues and eigenvectors of the one-dimensional spin-1⁄2 Heisenberg
model, which, as we have already seen, is a linear array of electrons with uniform exchange
interaction between nearest neighbours. Although nowdays many other quantum many-body
systems are known to be solvable by a variant of the Bethe ansatz, we will present the orig-
inal work, already notoriously complicated, solving the 1D ferromagnetic spin-1⁄2 Heisenberg
model, with a modern approach.

The idea behind the Bethe ansatz is to consider the chosen ground state, which is an eigen-
state of the Hamiltonian, with all the spins up and then flipping some spins.

We choose the ground state to be

|0⟩ = |↑↑↑ … ↑⟩ (2.6)

with ground energy
𝐻 |0⟩ = 𝐸0 = −𝐽𝑁

4 (2.7)

The next step is to flip a spin, which can be done using the spin ladder operators (𝑆±). A
state with 𝑀 flipped spins is written as

|𝑛1, … , 𝑛𝑀⟩ = 𝑆−
𝑛1

… 𝑆−
𝑀 |0⟩ (2.8)

So the eigenstate is of the form

|𝜓⟩ = ∑
1≤𝑛1≤…≤𝑛𝑀≤𝑁

𝑎(𝑛1, … , 𝑛𝑀) |𝑛1, … , 𝑛𝑀⟩ (2.9)

where 𝑎(𝑛1, … , 𝑛𝑀) represent unknown coefficients. Because of the periodicity of the lat-
tice, 𝑎(𝑛1 + 𝑁, … , 𝑛𝑀) = 𝑎(𝑛1, … , 𝑛𝑀), the Bethe ansatz proposes that the form of those
coefficients is

𝑎(𝑛1, … , 𝑛𝑀) = ∑
𝜎∈𝑆𝑀

𝐴𝜎𝑒𝑖𝑝𝜎𝑖 𝑛𝑖 (2.10)

which is a plain-wave ansatz. Each such flip1 creates excitations that behave like quasi-particles
called magnons, equivalently known and as quantized spin waves in the wave picture of quan-
tum mechanics.

2.2 || A Single Magnon
Here we will only discuss the case for a single magnon, cases with more magnons are ex-

tensivelly discussed in [4, 6, 5]

1Up to degeneration.
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CHAPTER 2. 2.2. A SINGLE MAGNON

If we flip a single spin, there are 𝑁 different states possible. If we call the lattice site with
the flipped spin 𝑛, then the state will be

|𝑛⟩ ∶= 𝑆−
𝑛 |0⟩ = |… ↓𝑛 …⟩ (2.11)

and the Hamiltonian acting on it will give us

𝐻 |𝑛⟩ = −𝐽 (1
2 |𝑛 − 1⟩ + 1

2 |𝑛 + 1⟩ + |𝑛⟩) (2.12)

We can see here that the flipped spin behaves like some sort of quasi-particle, being able
to travel around sites or stay put.

If we now want to study this new quasi-particle the most natural way to start is to write
down the eigenvector of the momentum 𝑝

|𝑝⟩ = ∑
𝑛

𝑒𝑖𝑝𝑛 |𝑛⟩ (2.13)

which is the discrete version of a plane-wave that we got by taking 𝑎(𝑛) = 𝑒𝑖𝑝𝑛.

If we now go back and look at the Hamiltonian action on a flipped spin at some position
𝑛, we can see that it has a contribution from its neighbouring sites

𝐻 |𝑝⟩ = … − 𝐽
2 [𝑒𝑖𝑝(𝑛+1) + 𝑒𝑖𝑝(𝑛−1) − 𝑒𝑖𝑝𝑛] |𝑛⟩ … (2.14)

Therefore we see that |𝑝⟩ is an eigenstate of the Hamiltonian, with corresponding energy

𝐸 = 2𝐽 sin2 (𝑝
2) (2.15)

so the magnon is a quasi-particle with momentum 𝑝 and energy 𝐸 moving in the ground state.

As we impose periodicity, it acts as a quantization condition on the momentum which can
be seen by acting with the Hamiltonian on the 𝑁 th site. Since we get a contribution from 𝑛1
instead of 𝑛𝑁+1, we find that this is an eigenstate with eigenvalue E

𝑒𝑖𝑝𝑁 = 1 (2.16)

which is the momentum quantization condition for a particle on a circle of length 𝑁 .
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3 | Real-Space Renormalisation Group

The idea behind RG processes came when, in 1966, Leo Kadanoff[7] proposed that spins can
be transformed into superspins, shaped from blocks of spins, for Ising-like models and proving
some empirical1 relations.

Phase transitions had mostly been studied in classical systems, where the Ising model has
been solved exactly in two dimensions[8] and the Kondo problem was famously solved by
Wilson in 1975[9]. If we want to study the low temperature behaviour of physical systems, we
have to take into account the quantum nature of such systems, since it affects phase transition
phenomena.

This is because the universality ideas that have emerged lead to the fact that the critical
behaviour should be affected by quantum effects at low temperatures, which implies that the
existence of quantum transitions at 𝑇 = 0 creates quantum-classical crossover phenomena
in classical low temperature transitions. Because of this, real-space renormalisation group
methods have been expanded to quantum systems at 𝑇 ≠ 0, whilst at 𝑇 = 0 the block renor-
malisation group method has been introduced to study the ground state and the excited states
of many-body quantum systems, allowing for the study of transitions which take place in the
ground state of the system.

In 1977, H.P. van der Braak et al[10], used the Block RGmethod to study the AF Heisenberg
model while some years later, in 1979, Dasgupta, Ma and Hu[11, 12], developed their own real
space RG process to study the low-temperature properties of the randomAF Heisenberg model
in 1D.

3.1 || RSRG of the AF Heisenberg Model
As shown already, the isotropic antiferromagnetic Hamiltonian is

𝐻 = 𝐽
𝑁

∑
𝑖=1

𝑆𝑥
𝑖 𝑆𝑥

𝑖+1 + 𝑆𝑦
𝑖 𝑆𝑦

𝑖+1 + 𝑆𝑧
𝑖 𝑆𝑧

𝑖+1 (3.1)

If we want to study the more general anisotropic model, for purposes what will become
apparent later, it’s useful to assume that 𝐽𝑥 = 𝐽𝑦 = 1 and 𝐽𝑧 = 𝛾, 0 ≤ 𝛾 ≤ 1, so that the
Hamiltonian takes the form

𝐻 =
𝑁

∑
𝑖=1

𝑆𝑥
𝑖 𝑆𝑥

𝑖+1 + 𝑆𝑦
𝑖 𝑆𝑦

𝑖+1 + 𝛾𝑆𝑧
𝑖 𝑆𝑧

𝑖+1 (3.2)

We may now group lattice sites into groups of three, labelling the pairs as (𝑘, 𝑎) with
𝑘 = 1, 2, ..., 1/3𝑁 specifying the block and 𝑎 = 1, 2, 3 specifying the sites within each block,
thus the 𝑛th lattice site is labelled as (𝑘, 𝑎) where 𝑛 = 3𝑘 − 3 + 𝑎. Since the lattice sites are in

1Empirical at the time.
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CHAPTER 3. 3.1. RSRG OF THE AF HEISENBERG MODEL

groups of three, the blockwill have half-integer spinwhich retains the properties of the original
degrees of freedom. The Hamiltonian is then decomposed into two separate pieces, 𝐻𝑖𝑛 and
𝐻𝑜𝑢𝑡, where 𝐻𝑖𝑛 is the Hamiltonian of the couples inside a group and 𝐻𝑜𝑢𝑡 the Hamiltonian
coupling sites in adjacent blocks.

𝐻𝑖𝑛 = ∑
𝑘

[𝑆𝑥(𝑘, 1)𝑆𝑥(𝑘, 2) + 𝑆𝑥(𝑘, 2)𝑆𝑥(𝑘, 3)

+𝑆𝑦(𝑘, 1)𝑆𝑦(𝑘, 2) + 𝑆𝑦(𝑘, 2)𝑆𝑦(𝑘, 3)
+𝛾(𝑆𝑧(𝑘, 1)𝑆𝑧(𝑘, 2) + 𝑆𝑧(𝑘, 2)𝑆𝑧(𝑘, 3))]

𝐻𝑜𝑢𝑡 = ∑
𝑘

[𝑆𝑥(𝑘, 3)𝑆𝑥(𝑘 + 1, 1) + 𝑆𝑦(𝑘, 3)𝑆𝑦(𝑘 + 1, 1)

+𝛾(𝑆𝑧(𝑘, 3)𝑆𝑧(𝑘 + 1, 1))]

(3.3)

The next step is to diagonalise 𝐻𝑖𝑛 which can be achieved by considering a single block

𝐻𝑖𝑛 = ∑
𝑘

𝐻𝑏𝑙𝑜𝑐𝑘(𝑘)

𝐻𝑏𝑙𝑜𝑐𝑘 = ⃗𝑆(1) ⃗𝑆(2) + ⃗𝑆(2) ⃗𝑆(3) + 𝜖(𝑆𝑧(1)𝑆𝑧(2) + 𝑆𝑧(2)𝑆𝑧(3))

= 1
2 [( ⃗𝑆(1) + ⃗𝑆(2) + ⃗𝑆(3))2 − ( ⃗𝑆(1) + ⃗𝑆(3))2 − 3

2]

+ 𝜖(𝑆𝑧(1)𝑆𝑧(2) + 𝑆𝑧(2)𝑆𝑧(3))

(3.4)

where 𝜖 = 𝛾 − 1.

For 𝜖 = 0, the isotropic case, 𝐻𝑏𝑙𝑜𝑐𝑘 is rotationally invariant, and the eigenstates can be
found by combining ⃗𝑆(1) and ⃗𝑆(3) to get a total spin of 0 or 1, which is then coupled to ⃗𝑆(2)
giving us a spin-3⁄2 multiplet and two spin-1⁄2 doublets

∣32 , 3
2⟩ = |↑↑↑⟩ , 𝐸 = +1

2
∣32, 1

2⟩ = 1√
3 (|↓↑↑⟩ + |↑↓↑⟩ + |↑↑↓⟩) , 𝐸 = +1

2
∣12, 1

2⟩
1

= 1√
6 (|↓↑↑⟩ + 2 |↑↓↑⟩ + |↑↑↓⟩) , 𝐸 = −1

∣12, 1
2⟩

0
= 1√

2
(|↑↑↓⟩ − |↓↑↑⟩) , 𝐸 = 0

(3.5)

plus the four corresponding to all the spins flipped with negative total 𝑆.

For 𝜖 ≠ 0, 𝐻𝑏𝑙𝑜𝑐𝑘 has the discrete symmetry 𝑧 → −𝑧 and is also invariant only under
rotations about the 𝑧-axis. This means that the states of different total spin but equal 𝑆𝑧 can
coexist. The state ∣3

2 , 3
2⟩ is still an eigenstate, with energy 𝐸 = 1

2𝛾, as is the state ∣1
2 , 1

2⟩0, with

11



CHAPTER 3. 3.1. RSRG OF THE AF HEISENBERG MODEL

energy 𝐸 = 0, but the states ∣1
2 , 1

2⟩1 and ∣3
2 , 1

2⟩ mix with each other. If we diagonalize the 2×2
matrix, we get the lowest energy eigenstate

∣+1
2⟩ = 1

1 + 2𝑥2 (∣12, 1
2⟩

1
+

√
2𝑥 ∣32, 1

2⟩)

𝐸 = −1
4 [𝛾 + (𝛾2 + 8)1/2]

𝑥 ∶= 2(𝛾 − 1)
8 + 𝛾 + 3(𝛾2 + 8)

(3.6)

Since the eigenvalues form a complete set, we could get an equivalent description by spec-
ifying the eigenstate of each block. A good argument to help us is that the low-lying states of
the lattice are predominantly formed by the low lying eigenstates of 𝐻𝑏𝑙𝑜𝑐𝑘, which allows us
to restrict our attention to the sector of states built exclusively from the block states ∣+1

2⟩ and
∣−1

2⟩, where ∣−1
2⟩ is given from ∣+1

2⟩ under 𝑧 → −𝑧.

∣+1
2⟩ = 1√

1 + 2𝑥2
1√
6[(2𝑥 − 1) |↓↑↑⟩ + (2𝑥 + 2) |↑↓↑⟩ + (2𝑥 − 1) |↑↑↓⟩ ]

∣−1
2⟩ = − 1√

1 + 2𝑥2
1√
6[(2𝑥 − 1) |↑↓↓⟩ + (2𝑥 + 2) |↓↑↓⟩ + (2𝑥 − 1) |↓↓↑⟩ ]

(3.7)

The next step is to form an effective Hamiltonian, who’s matrix elements are the same as
the original in this state sector.

Construction of the Effective Hamiltonian

The effective Hamiltonian is constructed by defining new spin operators ⃗𝑆′ such that

⟨1
2, +1

2∣ ⃗𝑆′
𝑧∣12 , +1

2⟩
1

= + 1
2

⟨1
2, −1

2∣ ⃗𝑆′
𝑧∣12 , −1

2⟩
1

= − 1
2

⋮

(3.8)

Using this definition we can easily calculate that in each block

⟨𝑆𝑥(1)⟩ = ⟨𝑆𝑥(3)⟩ = 2(1 + 𝑥)(1 − 2𝑥)
3(1 + 2𝑥2) ⟨𝑆𝑥′⟩

⟨𝑆𝑦(1)⟩ = ⟨𝑆𝑦(3)⟩ = 2(1 + 𝑥)(1 − 2𝑥)
3(1 + 2𝑥2) ⟨𝑆𝑦′⟩

⟨𝑆𝑧(1)⟩ = ⟨𝑆𝑧(3)⟩ = 2(1 + 𝑥)2

3(1 + 2𝑥2) ⟨𝑆𝑧′⟩

(3.9)

where the ⟨𝑆𝑖⟩ implies any one of the four matrix elements involving the states ∣±1
2⟩ and the

equality ⟨𝑆𝑖(1)⟩ = ⟨𝑆𝑖(3)⟩ is due to the even parity of the states. From the above, we can

12



CHAPTER 3. 3.1. RSRG OF THE AF HEISENBERG MODEL

eliminate the ⃗𝑆 operators from 𝐻𝑜𝑢𝑡 and since 𝐻𝑖𝑛 has already been diagonalised we can form
the effective Hamiltonian

𝐻(1) =
𝑁/3

∑
𝑖=1

𝑎1 +
𝑁/3−1
∑
𝑖=1

𝑏1[𝑆𝑥′(𝑘)𝑆𝑥′(𝑘 + 1)

+𝑆𝑦′(𝑘)𝑆𝑦′(𝑘 + 1)
+𝛾1𝑆𝑧′(𝑘)𝑆𝑧′(𝑘 + 1)]

(3.10)

where 𝑎1, 𝑏1 are given by

𝑎1 = −1
4[𝛾 + √𝛾2 + 8]

𝑏1 = (2(1 + 𝑥)(1 − 2𝑥)
3(1 + 2𝑥2) )

2

𝛾1 = ( 1 + 𝑥
1 − 2𝑥)

2
𝛾

(3.11)

Since the form of the effective Hamiltonian is essentially the same as that of the original
Hamitlonian, apart from the energy shift 𝑎1 and the scaling factor 𝑏1, the blocks can be seen
as the sites of a new lattice where we can follow an identical procedure on 𝐻(1) to get 𝐻(2), etc.

In this way we can repeat the procedure 𝑚 times giving us a sequence of Hamiltonians
𝐻(𝑚) increasing the length scale each time and following the recursion relations

𝐻(𝑚) =
𝑁/3𝑚

∑
𝑘=1

𝑎𝑚 +
(𝑁/3𝑚)−1

∑
𝑘=1

𝑏𝑚[𝑆𝑥(𝑘)𝑆𝑥(𝑘 + 1)

+ 𝑆𝑦(𝑘)𝑆𝑦(𝑘 + 1)
+𝛾𝑚𝑆𝑧(𝑘)𝑆𝑧(𝑘 + 1)]

(3.12)

𝑎𝑚+1 = 3𝑎𝑚 − 1
4𝑏𝑚 [𝛾𝑚 + (𝛾2

𝑚 + 8)1/2]

𝑏𝑚+1 = 𝑏𝑚 (2 (1 + 𝑥𝑚) (1 − 2𝑥𝑚)
3 (1 + 2𝑥2𝑚) )

2

𝛾𝑚+1 = 𝛾𝑚 ( 1 + 𝑥𝑚
1 − 2𝑥𝑚

)
2

𝑎0 = 0, 𝑏0 = 1, 𝛾0 = 𝛾
where

𝑥𝑚 ≡ 2 (𝛾𝑚 − 1) [8 + 𝛾𝑚 + 3 (𝛾2
𝑚 + 8)1/2]

−1

In this context, 𝑎𝑚 shows the contribution to the energy, which becomes the dominant
contribution after sufficientlymany iterations of the BRG process. On the finite lattice of length
𝑁 , the number of iterations needed is approximately𝑚 = log3 𝑁[13], so that after𝑚 iterations

13



CHAPTER 3. 3.1. RSRG OF THE AF HEISENBERG MODEL

the whole lattice has been reduced to a single block, meaning that 𝑎𝑚 is the sole contributor to
the energy. Since every iteration reduces the lattice sites by a factor 1⁄3, the energy per original
lattice site is computed as 𝑎𝑚/3𝑚 ≡ ℰ𝑚. If we let 𝑁 → ∞, we get the infinite lattice, which
yields an energy density given by

ℰ𝑚+1 = ℰ𝑚 − 1
12(3𝑚)𝑏𝑚[𝛾𝑚 + (𝛾2

𝑚 + 8) 1
2 ], where ℰ0 = 0 (3.13)

Due to the nature of the RG process, the set of states in each step is smaller than the pre-
vious one, meaning that the above equation can always be seen as an upper bound of the true
energy density.

Fixed Points
The recursion relations (3.12) have three fixed points in the region 𝛾 ≥ 0. Here wewill only dis-
cuss the fixed point 𝛾 = 0, which is the XY model, the other two being 𝛾 = 1 and 𝛾 → ∞[13].

Near 𝛾 = 0, the RG equations reduce to

𝛾𝑚+1 = 1
2𝛾𝑚

𝑏𝑚+1 = [1
2 + 𝒪 (𝛾𝑚)] 𝑏𝑚

ℰ𝑚+1 = ℰ𝑚 − 1
12 (3𝑚)𝑏𝑚 (2

√
2 + 𝛾𝑚)

(3.14)

The first recursion relation of (3.14) implies that if |𝛾| is small, the system flows towards the
XY form, so that the 𝛾 = 0 fixed point is stable . The second relation implies that lim𝑚→∞ 𝑏𝑚 =
0, so that the XY model is a massless theory. This means that after sufficiently many iterations
we can construct states with an arbitrarily small excitation energy.

Finally, calculating the energy density ℰ𝑚 at the point 𝛾 = 0 using (3.14) gives us

ℰ𝑚+1 = ℰ𝑚 −
√

2
6𝑚+1 (3.15)

which, for 𝑚 → ∞ gives us a geometric series, whose sum is

ℰ∞ = −
√

2
5 = −0.2828 (3.16)

which, when compared with the exact result[2] yields an error of 11%.
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4 | SDRG Method for the Random AF Model

Renormalization methods in pure systems usually involve a finite number of coupling con-
stants, in contrast with renormalization methods in disordered systems, which involve prob-
ability distributions that live in an infinite dimensional space. This increases the difficulty of
the study of the RG flow, since now we study complex functionals instead of critical expo-
nents and the fixed points are much harder to find. This extra difficulty usually leads to the
necessity of numerical solutions or to additional approximations consisting of projections into
finite spaces by choosing certain analytical forms for distributions with a limited number of
parameters. There is a small number of RG flows that are simple enough to be analyzed com-
pletely, whose fixed point distributions usually have interesting probabilistic interpretations,
the Dasgupta-Ma RG method being one of them.

The Dasgupta-Ma RG method, as introduced by Dasgupta and Ma[12], has two important
properties. The first one is that the renormalization concerns the extreme value of a random
variable, which determines the scale and evolves via the renormalization, and serves as the cut-
off point of the renormalized distribution. The second property is that the renormalization is
local in space, meaning that in each step only the immediate neighbours of the aforementioned
random variable are concerned by the RG procedure.

4.1 || Dasgupta-Ma RG Method for the Heisenberg Model
Most generally, the Heisenberg model with random couplings and anisotropy is

𝐻 =
𝑁

∑
𝑖

⃗𝐽𝑖 ⃗𝑆𝑖 ⃗𝑆𝑖+1 (4.1)

The coupling constants 𝐽𝑖 show quenched randomness, meaning they are randomly dis-
tributed in space, but fixed in time, following a certain distribution function 𝑃(𝐽), 0 < 𝐽 <
max 𝐽 = Ω. Because of this, the chain does not have translational invariance which causes the
system to not have a spin-wave spectrum. It is therefore easier (if not the only possible way)
to find approximate solutions for the problem of arbitrary 𝑃(𝐽).

If we want to decimate a general random XYZ chain, we have to pick the bond with the
largest of the possible 𝐽 . Without loss of generality, we name that bond the 𝑛 = 2 bond, so
the local Hamiltonian takes the form

ℋ23 = ⃗𝐽2 ⃗𝑆2 ⃗𝑆3 (4.2)

Because the bond 2−3 is the strongest, we are able to handle the bonds 1−4 pertubatively,
which is shown in Appendix B. This means that the 1 − 4 Hamiltonian is of the form

ℋ14 = 𝐸′
14 + ⃗𝐽 ′

14 ⃗𝑆′
1 ⃗𝑆′

4 (4.3)

where
𝐽𝑥

1−4 = 𝐽𝑥
1 𝐽𝑥

3
𝐽𝑦

2 + 𝐽𝑧
2

(4.4)
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CHAPTER 4. 4.2. RG FLOW EQUATION FOR THE XX CHAIN

the approximated pertubation of the bond in the x direction1. By ignoring the stable term2,
and by taking the ⃗𝐽1,3 << ⃗𝐽2, we get that ̃𝑆1,4 = 𝑆1,4 up to 𝒪(𝐽1,3/𝐽2)[14] and therefore
the effective Hamiltonian in (3.3) will yield the correct ground energy, low-energy spectrum,
and low-temperature correlation functions of 𝑆1 and 𝑆4. We shall use the recursion relation
(4.4) as the basis for the renormalisation group transformations for the rest of the chapter.

The flow equation takes the form of

𝜕𝑃
𝜕𝐽 = 𝑅[𝑃 ] (4.5)

where 𝑅[𝑃 ] is a complex functional.

4.2 || RG Flow Equation for the XX Chain
For the rest of the discussion we shall only consider the simplest case, that of the 𝑋𝑋 chain

with 𝐽𝑥 = 𝐽𝑦 = 𝐽 . The recursion relation then becomes

𝐽𝑧 = 0, ̃𝐽 = 𝐽1𝐽3
𝐽2

(4.6)

and defining the strongest bond is simply Ω ∶= max(𝐽).

Because of the new recursion relation, it is convenient to transform our variables to loga-
rithmic, defining

Γ ∶= − ln(Ω)
𝜁 ∶= ln(Ω/𝐽 ) (4.7)

where obviously 𝜁 ≥ 0 and large 𝜁 → small 𝐽 .

Again the recursion relation changes. This time (4.6) becomes

𝜁 = 𝜁1 + 𝜁3 − 𝜁Ω = 𝜁1 + 𝜁3 = 𝜁− + 𝜁+ (4.8)

Having defined these new logarithmic variables, we can express the distribution of bonds
as 𝑃(𝜁, Γ), with the probability of a bond 𝜁 at a fixed scale Γ being 𝑃(𝜁, Γ)d𝜁 = d𝑃(𝜁, Γ).
With every step of the elimination transformation, Γ changes to Γ + 𝛿Γ, firstly because of the
change of 𝜁 → 𝜁′

𝜁′ = ln(Ω′

𝐽 ) = ln(Ω
𝐽 ) − Γ + Γ′ = 𝜁 + 𝛿Γ (4.9)

and secondly from the fact that in the elimination process, a new bond is added, namely ̃𝐽 .

1Likewise for 𝐽𝑦.𝑧
1−4.

2The stable term would be useful to calculate things such as the ground energy, but in general can be emitted.
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CHAPTER 4. 4.3. FIXED POINTS AND THE RANDOM SINGLET PHASE

Combining those two contributions, near the limit where 𝛿Γ → 0, the distribution𝑃(𝜁, Γ)d𝜁
of bonds 𝜁 at scale Γ becomes

𝜕
𝜕Γ𝑃(𝜁, Γ) = 𝜕

𝜕𝜁 𝑃 (𝜁, Γ)+𝑃(0, Γ) ∫
∞

0
d𝜁− ∫

∞

0
d𝜁+𝛿(𝜁 −𝜁+ −𝜁−)𝑃 (𝜁+, Γ)𝑃 (𝜁−, Γ) (4.10)

where 𝑃 (0, Γ)dΓ is the fraction of bonds with 𝜁 in the range 0 to dΓ. Since 𝜁−, 𝜁+ represent
the bonds on each side (left and right respectively), the recursion relation makes an appearance
inside the delta function of the integral, which ensures that for each 𝜁, we are adding the cor-
responding probability of obtaining an effective bond with that value to the new distribution.

4.3 || Fixed Points and the Random Singlet Phase
If we look for fixed point solutions for the RG flow (3.10), a natural approach is to rescale 𝜁

to an appropriate power of Γ, 𝜅, since in this model the randomness always leads to a critical
point.

By defining
𝜂 = 𝜁

Γ𝜅 (4.11)

the distribution transforms to
𝑃(𝜁, Γ) = 1

Γ𝜅 𝑄(𝜂, Γ) (4.12)

and therefore the flow equation becomes

Γ𝜕𝑄
𝜕Γ = 𝜅 (𝑄 + 𝜂𝜕𝑄

𝜕𝜂 ) + Γ1−𝜅 (𝜕𝑄
𝜕𝜂 + 𝑄(0, Γ) ∫

𝜂

0
d𝜂′𝑄(𝜂′, Γ)𝑄(𝜂 − 𝜂′, Γ)) (4.13)

For 𝜅 > 1 the second term vanishes, leaving the fixed point equation as
𝜕𝑄
𝜕𝜂 = −𝑄

𝜂 (4.14)

giving the trivial solution of 𝑄(𝜂) = 𝐶/𝜂 , which diverges for small 𝜂, i.e. approaching the
strongest bond.

For 𝜅 < 1 the second term dominates, leaving tthe fixed point equation as

𝜕𝑄
𝜕𝜂 = −𝑄(0) ∫

𝜂

0
d𝜂′𝑄(𝜂′)𝑄(𝜂 − 𝜂′) (4.15)

who’s solution, using Laplace transformations, can be shown to oscillate in sign for big 𝜂. [15].

Both the aforementioned solutions are unphysical when it comes to the behaviour of fixed
points, thus the only physical solution left is 𝜅 = 1 as a possible scale exponent, leaving us
only with

Γ𝜕𝑄
𝜕Γ = 𝑄(𝜂, Γ) + (1 + 𝜂)𝜕𝑄

𝜕𝜂 + 𝑄(0, Γ) ∫
𝜂

0
d𝜂′𝑄(𝜂′, Γ)𝑄(𝜂 − 𝜂′, Γ) (4.16)
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CHAPTER 4. 4.3. FIXED POINTS AND THE RANDOM SINGLET PHASE

Looking for solutions of 𝑄∗(𝜂), independent of Γ, and therefore 𝜕𝑄
𝜕Γ = 0, we get the fixed

point equation, which has a one-parameter family of solutions, parametrized by 𝑄∗
0 = 𝑄∗(0).

By Laplace transforming 𝑄 → �̂�,

𝑧𝜕�̂�
𝜕𝑧 = 𝑧�̂� + 𝑄0[�̂�2 − 1] (4.17)

where 𝑄0 is constrained by

𝑄0 = 𝑄(0) = lim
𝜂→0+

𝑖
2𝜋𝑖 ∫

𝑐+𝑖∞

𝑐−𝑖∞
d𝑧 �̂�(𝑧)𝑒𝑧𝜂 (4.18)

and by linearizing �̂� via the transformation

�̂� = −𝑧
𝑢𝑄0

d𝑢
d𝑧 (4.19)

equation (3.15) becomes
d2𝑢
d𝑧2 + (1

𝑧 − 1) d𝑢
d𝑧 − 𝑄2

0
𝑧2 𝑢 = 0 (4.20)

Using the Frobenius method[15] we find that 𝑄0 = 𝑄(0) parametrizes a family of solutions
to the above equation, which when plugged into (3.14) gives the Laplace transformation of the
distribution. Using the inverse Laplace transform is then the fixed points we were looking for.

To narrow down the possible fixed point solutions, we must distinguish between whether
or not 𝑄0 is an integer. If 2𝑄0 is not an integer, instead of using the Frobenius method, we can
use the simpler

𝑢 =
∞

∑
𝑛=0

𝑢𝑛𝑧𝑛 (4.21)

where 𝑢𝑛 is given by the recursion relation

𝑢𝑛+1 = 𝑛 − 𝑄0
(𝑛 + 1)(𝑛 + 1 − 2𝑄0)𝑢𝑛 (4.22)

implying that for large positive z, 𝑢(𝑧) ∼ 𝑧𝑎𝑒𝑧 so that �̂� ≈ − 𝑧/𝑄0 which is unphysical[14].
Therefore 2𝑄0 = 𝑚 is an integer, which implies a 𝑧𝑚 ln 𝑧 part in 𝑢[14] forcing a 1/𝜂2𝑄0+1

tail in 𝑄(𝜂). The only exception is if 𝑚 = 2, meaning 𝑄(0) = 1, where in this case 𝑢 = 1 + 𝑧.

In the case where 𝑄0 = 1, the general form of �̂� is explicitly given by

�̂� = 1 + 𝐶′𝑒𝑧(1 − 𝑧)
1 + 𝑧 + 𝐶′𝑒𝑧 (4.23)

where the only value of 𝐶′ that gives the proper large 𝑧 behaviour �̂� ≈ 𝑄0/𝑧 , corresponding
to the discontinuity at 𝜂 = 0 is 𝐶′ = 0.
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CHAPTER 4. 4.4. PHYSICAL PROPERTIES

This means that the only fixed point that behaves well is

�̂� = 1
1 + 𝑧 (4.24)

yielding
𝑄∗(𝜂) = 𝑒−𝜂Θ(𝜂) (4.25)

where Θ(𝜂) is the Heaviside step function. This is the random singlet fixed point distribution,
which can be shown to be stable under pertubations exponentially decaying in 𝜂.[14]

If we want to express this distribution in terms of the original spin chain distribution,
remembering that 𝜅 = 1

𝑃 ∗(𝜁, Γ) = 1
Γ𝑒 − 𝜁/ΓΘ(𝜁) (4.26)

and by reverting back from the logarithmic parameters to our original bonds,

𝑃 ∗(𝐽, Ω) = 𝛼
Ω (Ω

𝐽 )
1−𝛼

Θ(Ω − 𝐽) (4.27)

where
𝛼 = 1/Γ = − 1/lnΩ (4.28)

If we remember the RG process, during each step we paired the two spins with strongest
bond in a singlet, replacing them with an effective bond between the neighbouring spins. Re-
peating this process enough times, the total effective bond between two spins at along distance
can become the strongest bond in the chain, causing the two spins to be paired in a long ranged
singlet.

Figure 4.1: A schematic of the random singlet phase. Pairs of spins, connected via bonds form
singlets over arbitrarily long distances. Notice that bonds do not overlap.

At low energies, the system consists mostly of pairs of spins coupled together into sin-
glets over arbitrarily long distances, shown in Figure 3.1. This critical point, described by the
distribution (3.23) is known as the random singlet phase.

4.4 || Physical Properties
Since the ground state of the random spin chain is composed by singlet pairs , where the

spins can be arbitrarily remote and the effective interaction between them is rapidly decreasing
with the distance, in order to assess the strength of the long bonds we must determine the
relation between the energy and length scales. The probability of connected spins at scale Γ
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CHAPTER 4. 4.4. PHYSICAL PROPERTIES

is 𝑃(0, Γ), so when Γ is increased by dΓ, a fraction 2𝑃(0, Γ)dΓ of the spins left are removed.
Near the fixed point, 𝑃(0, Γ) = 𝑄(0, Γ)/Γ ≈ 𝑄∗

0/Γ = 1/Γ , the number of spins 𝑛 changes
due to the renormalisation step

d𝑛
dΓ = −2𝑄∗

0
Γ 𝑛Γ = −2

Γ 𝑛Γ (4.29)

meaning that the fraction of non-decimated spins at the new energy scale is

𝑛Γ = 1
Γ2 (4.30)

The typical length between the remaining spins at energy scale Γ is therefore

𝐿(Γ) ∼ 1
𝑛Γ

∼ Γ2 ∼ [ln(Ω)]2 (4.31)

which makes sense, since each ln 𝐽 is a sum, with alternating signs of a series of ln 𝐽𝑛. If there
was no correlation between the remaining spins at scale Γ and the bonds appearing in the
sum, then the sum would be an asymptotically Gaussian random variable, having mean zero
and variance such that Γ ∼

√
𝐿. The form of (4.31) is that of a dynamical scaling at an infinite

disorder fixed point.
Low Temperature Susceptibility
The low temperature susceptibility is estimated by studying how the system is affected when
exposed to external fields for different rations of thermal energy 𝑇 and energy scale Ω. In
the low temperature case, Ω >> 𝑇 , the strongly coupled pairs are very weakly excited by
the fluctuations of the thermal energy, whilst in the opposite limit, 𝑇 >> Ω, the remaining
pairs are very weakly coupled, since 𝐽 << 𝑇 , and they are therefore uncoupled and free to
contribute to the Curie susceptibility, which goes as ∼ 𝑇 . In this case, one should stop the
renormalization procedure at the limit where Ω = 𝑇 , where the remaining spins, that have a
density 𝑛Γ ∼ ln2(Ω/𝑇), all contribute by a Curie susceptibility giving

𝜒 ∼ 𝜒𝑧 ∼
𝑛Γ𝑇

𝑇 ∼ 1
𝑇 [ln Ω

𝑇 ]2 (4.32)

The transverse and longitudinal susceptibilities have the same singular behaviour where
the Curie-type susceptibility is modified by log-type corrections. Because these corrections
are very strong, they typically lead in measuring effective temperature dependent critical ex-
ponents.
Average Pair Correlation Function
The average pair correlation function between two spins at distance 𝑟 ∼ 𝐿 is dominated by the
remaining spins at length scale 𝐿, because the decimated spins form singlets, the correlation
between spins of different singlets is negligible. The probability to have a free spin at length
scale 𝐿 is 𝑛Γ𝐿

∼ 1/𝐿, whilst for 2 spins it’s 𝑛2
Γ𝐿

. There’s a finite probability that under further
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decimation, the two spins will form a singlet, and will therefore have a correlation 𝐶(𝑟) =
𝒪(1). If we average the correlation over spin-pairs with mutual distance 𝑟, we get

⟨𝐶(𝑟)⟩ ∼ (−1)𝑟

𝑟2 (4.33)

By considering two randomly chosen spins at distance 𝑟, we expect that typically they will
belong to different singlet pairs, and therefore the typical correlations will be very weak. If the
length scale during the decimation is 𝐿 = 𝑟, the two spins become nearest neighbours with
effective coupling 𝐽𝐿 ∼ Ω𝐿 which measures the size of these correlations. We therefore have

− ln𝐶𝑡𝑦𝑝(𝑟) ∼ lnΩ𝐿 ∼ Γ−1
𝐿 ∼ 1

𝐿1/2 ∼ 1
𝑟1/2 (4.34)

which is completely different from the average correlation function. We therefore note that
the correlation function in the random singlet phase is non-self averaging.
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5 | Numerical Dasgupta-Ma RG

5.1 || Introduction to the Model
In order to better grasp the ideas presented in the previous chapter, and also to appreciate

the complexity of the Strong Disorder RG, we created a numerical model to simulate the pro-
cess using Python.

If we wanted to simulate the nearest-neighbour spin chain we would need two rows, one
for each left spin and one for each right spin.

left spin ∶= [1 2 3 4 … 𝑁 − 1]
right spin ∶= [2 3 4 5 … 𝑁]

where the bonds would then form a matrix

Right spin
2 3 4 5 … 𝑁

L
e
f
t

s
p
i
n

1 𝐽1
2 𝐽2
3 𝐽3
4 𝐽4
⋮ ⋱

𝑁 − 1 𝐽𝑁−1

which, after an iteration of the RG method would look like

Right spin
2 3 4 5 … 𝑁

L
e
f
t

s
p
i
n

1 𝐽1
2 0 ̃𝐽24
3 singlet

4 0
⋮ ⋱

𝑁 − 1 𝐽𝑁−1

so that the two spins interacting with the new effective bond being between spins [2, 5],
since the spins [3, 4] form a singlet. This means that we can effectively represent a spin chain
using only a bond matrix, so that the column represents the left spin and the row the right spin,
i.e. a bond in the [𝑖, 𝑗] position of the matrix would denote an interaction between ⃗𝑆𝑖 and ⃗𝑆𝑗+1.
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CHAPTER 5. 5.1. INTRODUCTION TO THE MODEL

The first step then, is to make an 𝑁 × 𝑁 matrix with the diagonal taking random values
using the uniform distribution

𝑃(𝐽) = {
1

𝑏−𝑎 , 𝑥 ∈ [𝑏, 𝑎]
0, everywhere else

(5.1)

where without loss of generality, we can set 𝑎 = 0, 𝑏 = 1. This means that all the values of
the strength of the bonds will range between 0 and 1 (Fig.5.1).

Figure 5.1: This is the matrix for a spin chain with 30 spin particles. Note that the top left and
bottom right positions are empty. This is due to the fact that we simulated an aperiodic, finite
chain.

We then follow the process as explained by Dasgupta, Ma and Hu[11, 12], finding the
strongest bond, decimating it and replacing it with a new effective bond (Fig 5.2). In order
to avoid the singlet bond randomly been picked for the elimination transformation, we give it
a negative value.

Figure 5.2: The new matrix generated after a single iteration of the RG method. The black
colour indicates a singlet, which is ”trapped” under the new effective bond as expected.

By continuing the iterations we end up with even more singlets, and the possibility of
long-range interacting spins is made visible (Fig. 5.3).
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CHAPTER 5. 5.1. INTRODUCTION TO THE MODEL

Figure 5.3: Different stages of the RG process. As more bonds are decimated we get a glimpse
of the long range bonds between spins comprising a singlet, represented by the deviation from
the main diagonal.

As the final iteration resolves, we reach the random singlet state, comprising of singlets
formed over arbitrary distances (Fig. 5.4).

Figure 5.4: The random singlet phase, where all bonds of the spin chain have been replaced
by singlets. As we can see, we end up with singlets that are connected over arbitrarily long
distances.

To make the figures eligible, we chose to have a small number of starting bonds, meaning
that only a very small number of singlets will have formed with non-initial nearest neighbours.
Should we scale this up, we would get both more long singlets as well as longer singlets.
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5.2 || Results
Unfortunately, due to the aperiodic nature of the system, it is impossible to define 𝜁 for ev-

ery step of the iteration, due to the fact that sometimes, the strongest bond will be the one on
either edge of the chain. The way to circumvent this problem is to assume that if the strongest
bond Ω is in an edge location, rather than 𝐽± = 0, 𝐽± takes an infitesimal value 𝜀 > 0 so that
𝐽± << Ω ⇒ 𝜁 << 1 and therefore we can assume 𝜂 = 0.

To see the fixed point distribution (Eq.4.25) we sort all the non-zero values of 𝜂 during the
RG process and for each step summing over the values to the right, essentially approximating
a CDF (Fig. 5.5).

Figure 5.5: Two different CDFs of 𝜂 for different lengths of the spin chain. The right one has
𝑁 = 1001 spins, while the left one has 𝑁 = 2001. The red dotted line is the CDF of the
exponential distribution over the range of the iteration steps.

If we zoom in on the area near the end of the process, we see that as we near the random
singlet phase, the exponential CDF indeed acts as a stable fixed point for the CDF of 𝜂 (Fig.
5.6).

Figure 5.6: Here we can see how the CDF of 𝜂 approaches the fixed point 𝑄∗ for the aforemen-
tioned systems.
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As we can see from (Fig. 5.5), as we increase the number of spins 𝑁 , the CDF of 𝜂 during
the RG goes to the CDF of the exponential distribution. An expected behaviour would be that,
as we approach 𝑁 → ∞, we would see the CDF of 𝜂 become asymptotically exactly the CDF
of the exponential distribution.

Last but not least, the length between spins during the RG process is shown (Fig. 5.7).

Figure 5.7: The number of bonds sharing the same distance on a system with 1001 spins. We
can see how a very small number of spins share a bond over very long distances.

26



Appendices

27



A |The Heisenberg Hamiltonian

When we take a look at a system of two electrons the Hamiltonian is

𝐻Φ = 𝐻0Φ + 𝑉 Φ = 𝐸Φ (A.1)

where Φ is the spatial wavefunction, 𝑉 the Coulomb interaction between the two electrons
and 𝐻0 is the basic Hamiltonian

𝐻0 = 𝑝2

2𝑚 (A.2)

By including the spin interaction, the state of the combination of the electrons is in a su-
perposition of the states

Ψ = { Φ𝑠 |𝑠⟩
Φ𝑡 |𝑡⟩ (A.3)

where |𝑠⟩ is the singlet and |𝑡⟩ is the triplet state.

Since we’re dealing with fermions, due to the Pauli exclusion principle, the wavefunction
Ψ must be anti-symmetric and therefore Φ𝑠 must be symmetric, whilst Φ𝑡 is anti-symmetric.

Because of the different symmetric properties, the expected value of the Coulomb energy
is different for the singlet state and the triplet state. The difference, symbolised as 𝐽 is

𝐽 ∶= 𝐸𝑠 − 𝐸𝑡 = ⟨Φ𝑠|𝑉 |Φ𝑠⟩ − ⟨Φ𝑡|𝑉 |Φ𝑡⟩ (A.4)

𝐽 is also known as the exchange integral. We can see why if, once we express Φ𝑠/𝑡 as

Φ𝑠/𝑡 ∶= Φ± = 1√
2

[𝜙𝑎(𝑟1)𝜙𝑏(𝑟2) ± 𝜙𝑎(𝑟2)𝜙𝑏(𝑟1)] (A.5)

and remember what Dirac notation is, we write

𝐽 = 2 ∬ d𝑟1d𝑟2 𝜙∗
𝑎(𝑟1)𝜙∗

𝑏(𝑟2)𝑉 𝜙𝑎(𝑟2)𝜙𝑏(𝑟1) (A.6)

The symmetry of the spins decides the symmetry of the spatial wavefunctions meaning
that the alignment of the spins determines the electrostatic energy ⟨Ψ|𝑉 |Ψ⟩. In the singlet
state the spins are antiparallel while, in the triplet state, they are parallel. Because 𝐽 is derived
solely from a spin-independent Hamiltonian, it serves as an indication for the dependance of
the Coulomb energy from the orientation of the spins.

The sign of 𝐽 carries a special significance. If 𝐽 is positive, the system if said to be ferro-
magnetic, while if it’s negative, the system is said to be antiferromagnetic. Because the spatial
states are sufficient to study the electromagnetic properties, for each pair of electrons we have
four states. We can combine the singlet and triplet states by defining a new Hamiltonian

𝐻1,2 = (1
4𝐸𝑠 + 3

4𝐸𝑡) − (𝐸𝑠 − 𝐸𝑡) ⃗𝑆1 ⃗𝑆2 (A.7)
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By ignoring the constant term, since it’s only contribution is to shift the ground state energy,
we can rewrite the new Hamiltonian as

𝐻1,2 = −𝐽 ⃗𝑆1 ⃗𝑆2 (A.8)

The above is the Heisenberg Hamiltonian for a pair of electrons. If we want to expand to
a solid with 𝑁 electrons, we should probably account for the effect of the lattice on the states
and how that affects the interactions between the electrons, but we don’t. Instead, we expand
the Hamiltonian by assuming that each electron simply interacts with every other in the same
way and we sum over all interactions. The effects of the lattice are then assumed to act as an
external field on each spin

𝐻 = − ∑
𝑖𝑗

𝐽𝑖𝑗 ⃗𝑆𝑖 ⃗𝑆𝑗 − 𝑔𝜇𝐵𝐻 ∑
𝑖

⃗𝑆𝑖 (A.9)

By ignoring the external field and assuming that the interaction is weaker as we move
further from each spin and keep only the terms with nearest neighbour interactions, we can
simplify even further. In this case, the Hamiltonian changes again to take the form

𝐻 = −𝐽 ∑
𝑖

⃗𝑆𝑖 ⃗𝑆𝑖+1 (A.10)
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B | Pertubation of theRandomXXSpinChain

The local Hamiltonian, considering solely the bond between the spins ⃗𝑆2 and ⃗𝑆3 is

𝐻0 = 𝐽2 ⃗𝑆2 ⋅ ⃗𝑆3 (B.1)
This XX system has a singlet state as its ground state |𝑠⟩ and three triplet states as the

excited states |𝑡⟩. In the basis of 𝑆𝑧

|𝑠⟩ = 1√
2

(|⇅⟩ − |⇵⟩) (B.2)

|𝑡1⟩ = |⇈⟩ (B.3)

|𝑡0⟩ = 1√
2

(|⇅⟩ + |⇵⟩) (B.4)

|𝑡−1⟩ = |⇊⟩ (B.5)

If we use the spin ladder operations, we can rewrite the Hamiltonian as

𝐻0 = 𝐽2
2 (𝑆+

1 𝑆−
2 + 𝑆−

1 𝑆+
2 ) (B.6)

from which we get

𝐸𝑠 = −1
2𝐽2

𝐸𝑡1
= 𝐸𝑡−1

= 0

𝐸𝑡0
= 1

2𝐽2

(B.7)

If we add the contributions of the nearest neighbours, ⃗𝑆1, ⃗𝑆4, and by the assumption that
𝐽2 is the strongest bond, we can treat 𝐽1, 𝐽3 perturbatively, giving us the Hamiltonian

𝐻 = 𝐻0 + ℋ (B.8)

where ℋ is given by
ℋ = 𝐽1 ⃗𝑆1 ⋅ ⃗𝑆2 + 𝐽3 ⃗𝑆3 ⋅ ⃗𝑆4 (B.9)

Perturbatively expanding around ℋ, modifies the energy of the ground state 𝐸𝑠 by

𝐸𝑠 → 𝐸𝑠 + ⟨𝑠| ℋ |𝑠⟩ + ∑
𝑡

|⟨𝑠| ℋ |𝑡⟩|2 1
𝐸𝑠 − 𝐸𝑡

(B.10)

Using Eq.(B.6), for fixed ⃗𝑆1, ⃗𝑆4, we can show that

⟨𝑠|ℋ|𝑠⟩ = ⟨𝑠| ℋ |𝑡0⟩ = 0

|⟨𝑠| ℋ |𝑡1⟩|2 = 1
8[𝐽2

1 ⃗𝑆+
1 ⃗𝑆−

1 + 𝐽2
3 ⃗𝑆+

4 ⃗𝑆−
4 − 𝐽1𝐽3( ⃗𝑆+

1 ⃗𝑆−
4 + ⃗𝑆+

4 ⃗𝑆−
1 )]

|⟨𝑠| ℋ |𝑡−1⟩|2 = 1
8[𝐽2

1 ⃗𝑆−
1 ⃗𝑆+

1 + 𝐽2
3 ⃗𝑆−

4 ⃗𝑆+
4 − 𝐽1𝐽3( ⃗𝑆−

1 ⃗𝑆+
4 + ⃗𝑆−

4 ⃗𝑆+
1 )]

(B.11)
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Thus, the sum becomes

∑
𝑡

|⟨𝑠| ℋ |𝑡⟩|2 1
𝐸𝑠 − 𝐸𝑡

= − 2
𝐽2

[𝐽2
1
8 ( ⃗𝑆+

1 ⃗𝑆−
1 + ⃗𝑆−

1 ⃗𝑆+
1 ) + 𝐽2

3
8 ( ⃗𝑆+

4 ⃗𝑆−
4 + ⃗𝑆−

4 ⃗𝑆+
4 )

−𝐽1𝐽3
4 ( ⃗𝑆+

1 ⃗𝑆−
4 + ⃗𝑆+

4 ⃗𝑆−
1 )]

(B.12)

The sums of the form ⃗𝑆′+
𝑖 ⃗𝑆′−

𝑖 + ⃗𝑆′−
𝑖 ⃗𝑆′+

𝑖 act on the same spin and exhibit a very useful
behaviour. 𝑆+ annihilates an up spin, whilst 𝑆− annihilates a down spin. This means that
whenever this duet of operators in the parenthesis act upon a state, one of them becomes 0,
while the other one leaves the state unchanged. This means that the previous cumbersome
equality simplifies to

∑
𝑡

|⟨𝑠| ℋ |𝑡⟩|2 1
𝐸𝑠 − 𝐸𝑡

= − 2
𝐽2

[𝐽2
1
8 + 𝐽2

3
8 − 𝐽1𝐽3

4 ( ⃗𝑆1 ⋅ ⃗𝑆4)] (B.13)

where we inverted back from Eq.(B.6).

Rearranging and plugging the results into the pertubation introduced earlier in this Ap-
pendix, we end up with

𝐸𝑠 = 𝐸′
𝑠 + 𝐽 ′ ⃗𝑆1 ⋅ ⃗𝑆4 (B.14)

where
𝐸′

𝑠 = −1
2𝐽2 − 1

4𝐽2
(𝐽2

1 + 𝐽2
3 )

𝐽 ′ = 𝐽1𝐽3
𝐽2

(B.15)
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